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Problem statement

Walking drunkhard

A drunkard walks on the pavement in a straight line to return home.

Completely drunk, he does not control his progress and he could as

easily take a step forward as a step backward.
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Questions ?

Questions ?

Will he return (one day ?) to his starting point ?

What is the probability that he gets there in n steps ?

What is the mathematical expectation (expected value) of the

number of steps required ?
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Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Backward Forward

Coding

Define bf(n,d)=

Prgm

Send ”CONNECT RV”

For i,1,n

Send ”RV FORWARD eval(d)”

Send ”RV BACKWARD eval(d)”

EndFor

EndPrgm

Yvan Haine - Michelle Solhosse Walk of the drunk Rover



Problem statement
Simple programs

Question 1
Question 2
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Walking on a polygon

Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Random Backward Forward

Coding

Define random bf()=

Prgm

Send ”CONNECT RV”

c© d is a random number ∈ {−1, 1}
d :=2*randInt(0,1)-1

If d=1 Then

Send ”RV FORWARD 1”

Else

Send ”RV BACKWARD 1”

EndIf

EndPrgm
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Question 2
Question 3

Walking on a polygon

Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Return to the starting point

Coding - First step

Define drunkard()=

Prgm

c© n count the steps, x is the drunkard position

n :=0

x :=0

Send ”CONNECT RV”

random bf()

x :=x+d

n :=n+1
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Question 1
Question 2
Question 3

Walking on a polygon

Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Return to the starting point

Coding - Next steps

While x 6= 0

random bf()

x :=x+d

n :=n+1

EndWhile

Disp ”steps”,n

EndPrgm
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Question 1
Question 2
Question 3

Walking on a polygon

Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Where did he go ?

Coding - First step

Define drunkard pos()=

Prgm

n :=0 : x :=0

liste n := {0} : liste x := {0}
Send ”CONNECT RV”

random bf()

x :=x+d

n :=n+1

liste x :=augment(liste x,{x})
liste n :=augment(liste n,{n})
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Question 1
Question 2
Question 3

Walking on a polygon

Forward & backward
Random Backward Forward
How many steps ?
Where did he go ?

Where did he go ?

Coding - Next steps

While x 6= 0

random bf()

x :=x+d

n :=n+1

liste x :=augment(liste x,{x})
liste n :=augment(liste n,{n})
EndWhile

Disp ”liste n=”,liste n

Disp ”liste x=”,liste x

EndPrgm
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Multiple random walk

Question 1

Question 1 : Will he return ?

Does the drunkard always return to his starting position ?

If so, how many steps did he take ?

Before asking questions about probabilities, let’s start with

statistical investigations.

So let’s repeat the ”drunkard far” program many times. This time,

we neglect to roll the Rover.
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Walking on a polygon

Multiple random walk

Multiple random walk

Coding

Define drunkard multi(trials)=

Prgm

steps :={}
distance :={}
For i,1,trials

drunkard()

steps :=augment(steps,{n})
distance :=augment(distance,{far})
EndFor

EndPrgm
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Multiple random walk

Answer 1 : He’s coming back !

Experimental conclusion

Experimentally, the drunkard always comes back to his starting

point, even if sometimes he has to walk a lot !
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Question 2

Question 2

Can we calculate the probability that the drunkard will return to his

starting point after n steps ?
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Question 3
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

First approach

Study of possible progression

The drunkhard walks n steps.

What is the probability that he will arrive at a distance x from the

origin ?
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

First approach : Two methods

Let’s count the number of possible paths to reach x in n steps.

Let’s use the binomial distribution
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting number of paths

Let’s show the drunkard’s movements on a graph.

At the beginning (n = 0), he is at x = 0

x

n

0
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting number of paths

At the first step (n = 1), he can be either a step forward (x = 1) or a step

backward x = −1

x

n

0

1 1

The green numbers shows the number of possible paths to reach the x position

in n steps.
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting number of paths

At the second step (n = 2), he can be at x = −2, x = 0 or x = 2

x

n

0

1 1

1 12
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Question 1
Question 2
Question 3

Walking on a polygon

Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting number of paths

At the third step (n = 3), he can be at each abscissa

x = −3, x = −1, x = 1 ou x = 3
x

n

0

1 1

1 12

1 13 3
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Question
First approach
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Answer 2

Counting number of paths

At nth step, we get the following table (Pascal’s triangle)

x

n

0

1 1

1 12

1 13 3

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Σ = 2

Σ = 22

Σ = 23

Σ = 24

Σ = 25

Σ = 26
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Walking on a polygon

Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Probability computation

The probability P(x , n) that the drunkard has reached the point

A(x , n) of abscissa x after n steps is calculated by the quotient of

the number of paths arriving at A by the number of possible paths

in n steps (=2n).
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Probability computation

P(x , n)
x

n

1
2

1
2

1
4

1
4

2
4

1
8

1
8

3
8

3
8

1
16

4
16

6
16

4
16

1
16

1
32

5
32

10
32

10
32

5
32

1
32

1
64

6
64

15
64

20
64

15
64

6
64

1
64
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Theoretical way

In a theoretical way, to arrive at point A(x , n) , we must choose the

position of the p (+1) and the q (-1) in a such way as{
p + q = n

p − q = x
⇐⇒

{
p = n+x

2

q = n−x
2

and thus

P(x , n) =
C

n+x
2

n

2n
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Binomial distribution

Using binomial distribution (forward = success, backward = failure)

where X is the random variable representing the number of steps

”forward”

P(x , n) = P(X = p)

= P

(
X =

x + n

2

)
= C

n+x
2

n ·
(

1

2

) n+x
2

·
(

1

2

) n−x
2

=
C

n+x
2

n

2n
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

First return to the starting point

Back to question 2

What is the probability that it comes back for the first time at the

origin after n steps ?
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Question
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Binomial distribution
First return
Answer 2

First return to the starting point

To return to 0, the number of steps must be an even number

n = 2k. The number of paths can be counted on a truncated

triangle such as :
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting

At the beginning (n = 0), the drunkhard is at x = 0

x

n

0
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting

At the first step (n = 1),

x

n

0

1 1

The green numbers shows the number of possible paths to reach the

x position in n steps.
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First return
Answer 2

Counting

If, on the 2nd step (n = 2), the drunkard returns to x = 0, he stops.

x

n

0

1 1

1 12
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Question
First approach
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Binomial distribution
First return
Answer 2

Counting

Otherwise, on the 3rd step (n = 3), the drunkard can be at abscissa

x = −3 or x = −1 or x = 1 or x = 3
x

n

0

1 1

1 12

1 11 1
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting

If, on the 4th step (n = 2), the drunkard returns to x = 0, he stops.

x

n

0

1 1

1 12

1 11 1

1 2 2 2 1
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Counting

On the 6th step,we get the following table :

x

n

0

1 1

1 12

1 11 1

1 2 2 2 1

1 3 2 2 3 1

1 4 5 4 5 4 1
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Probability

The probability F (0, n) that the drunkhard arrives for the first time

at x = 0 after n steps is the quotient of the number of paths

arriving by the number of possible paths in n step (= 2n)

F (0, 2) =
2

22
=

1

2

F (0, 4) =
2

24
=

1

8

F (0, 6) =
4

26
=

1

16
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Probability

F (0, n) =

x

n

0
1
2

1
2

1
4

1
4

1
2

1
8

1
8

1
8

1
8

1
16

1
8

1
8

1
8

1
16

1
32

3
32

2
32

2
32

3
32

1
32

1
64

4
64

5
64

4
64

5
64

4
64

1
64
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Question 1
Question 2
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Probability of the fisrt return in 2k steps

If F (0, 2k) is the probability of returning to the starting point after

n = 2k steps, we have

F (0, 2k) = P(0, 2k − 2)− P(0, 2k)

and we can prove that

F (0, 2k) =
P(0, 2k)

2k − 1

P(0, 2k) being the probability that the drunkard arrives at A(0, 2k)

of abscissa 0 after 2k steps ie P(0, 2k) =
C k
2k

22k
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Question 1
Question 2
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Proof

P(0, 2k − 2)− P(0, 2k) =
Ck−1
2k−2

22k−2
−

Ck
2k

22k

=
1

22k−2

(
(2k − 2)!

((k − 1)!)2
−

(2k)!

4(k!)2

)

=
(2k − 2)!

22k−2

(
4k2 − (2k − 1)2k

4(k!)2

)

=
(2k − 2)!

22k

(
2k

(k!)2

)
2k − 1

2k − 1

=
(2k)!

22k

1

(k!)2(2k − 1)

=
Ck
2k

22k

(
1

(2k − 1)

)

=
P(0, 2k)

(2k − 1)
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Question
First approach
Counting number of paths
Binomial distribution
First return
Answer 2

Answer 2

Answer 2

Probability of first return

F (0, 2k) =
P(0, 2k)

(2k − 1)
=

C k
2k

(2k − 1) · 22k
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Distribution
Answer 3

Question 3

Question 3

Can we calculate the expectation of steps required ?
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Question 2
Question 3

Walking on a polygon

Distribution
Answer 3

Distribution

The distibution is therefore

k 1 2 3 4 5 . . . k

Xi = n 2 4 6 8 10 . . . 2k

pi
1

2

1

8

1

16

5

128

7

256
. . .

C k
2k

(2k − 1) · 22k
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Question 2
Question 3

Walking on a polygon

Distribution
Answer 3

Expectation

Mathematical expectation of the number of steps to return at the

origin for the first time.

E = P(0, 2) · 2 + P(0, 4) · 4 + . . .

=
+∞∑
k=0

2k

2k − 1
· (2k!)

(k!)2 · 22k

But

lim
k→+∞

2k

2k − 1︸ ︷︷ ︸
→1

· (2k!)

(k!)2 · 22k
= lim

k→+∞

(k + 1)

4 · 1
· k + 2

4 · 2
. . .

2k

4 · k
6= 0

Thus the series is divergent.
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Answer 3

Answer 3

The expectation of steps required doesn’t exist.
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Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Walking on a polygon

Problem statement

The drunkard moves randomly walking through the vertices of a

regular polygon At each step, he goes from one vertex to one of the

two adjacent vertices.

How many steps will it take to reach the vertex opposite the

starting point ?
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Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Principle

start : α = 0end : α = ±180
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αn

αn+1

d = 1
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Walking on a polygon

Coding

Define polygon walk(r,nside)=

Prgm

Send ”CONNECT RV”

α := 0 : n :=0

Send ”RV TO POLAR eval(r) eval(alpha)”

While α 6= 180 and α 6= −180

d :=2*randInt(0,1)-1

n :=n+1

α := α +
d ∗ 360

nside
Send ”RV TO POLAR eval(r) eval(alpha)”

EndWhile

Disp ”steps”,n

EndPrgm Yvan Haine - Michelle Solhosse Walk of the drunk Rover



Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Multiple walk on a polygon

Coding

Define poly multi(trials)=

Prgm

steps :={}
For i,1,trials

polygon walk(r,n)

steps :=augment(steps,{n})
EndFor

Disp pas

EndPrgm
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Reach the opposite vertex ?

Question

What is the average number of steps to reach the opposite vertex ?

square

hexagon

others polygon
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Question
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Simulations on a square

Coding

Define poly multi(trials)=

Prgm

steps :={}
For i,1,trials

polygon walk(3,4)

steps :=augment(steps,{n})
EndFor

Disp pas

EndPrgm
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Question
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Statistical results
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Probability

On a truncated graph such as this one, the numbers are the

numbers of path arriving to this point.

x
0

1

2

3

4

5

6

0

1 1

1 1
2

2 2

2
4

2
4 4

4
8

4
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Probability

The number of steps must be even and greater than or equal to 2,

n = 2k + 2.

We can prove by induction that the number of paths arriving to

A(2, 2k + 2) (on the right side) is equal to 2k .

The number of paths arriving to A′(2, 2k + 2) (on the left side) is

also 2k .

So, the number of paths going to the opposite vertex (by right ou

by left) is

N2
2k+2 = 2 · 2k = 2k+1
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Distribution and expectation

The probability to reach the opposite vertex with n steps is :

P(2, n) =
2 · 2k

22k+2
=

1

2
· 1

2k

The distribution is

k 0 1 2 3 . . . k

x 2 4 6 8 . . . 2k + 2

p
1

2

1

4

1

8

1

16
. . .

1

2k+1

Thus E =
1

2

∞∑
k=0

(2k + 2) · 1

2k
=
∞∑
k=0

k + 1

2k
=?
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Expectation - demonstration

E =
∞∑
k=0

k + 1

2k

=
∞∑
k=0

k

2k
+
∞∑
k=0

1

2k︸ ︷︷ ︸
→2(SG)

=
∞∑
k=1

k

2k
+ 2

=
∞∑
k=0

k + 1

2k+1
+ 2

=
1

2
E + 2

Thus E =
1

2
E + 2 ⇐⇒ E = 4
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Walk on a square - Conclusion

Reach the opposite vertex in a square

The average number of steps to reach the opposite vertex of a

square is 4.
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Reach the opposite vertex in an hexagon

Reach the opposite vertex

What is the average number of steps to reach the opposite vertex of

an hexagon ?
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Simulations on a hexagon

Coding

Define poly multi(trials)=

Prgm

steps :={}
For i,1,trials

polygon walk(3,6)

steps :=augment(steps,n)

EndFor

Disp steps

EndPrgm
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Probability

On a truncated graph such as this one, the numbers are the

numbers of path arriving to this point.

x
0

1

2

3

4

5

6

7

8

0

1 1

1 1
2

1 13 3

3
6

3
3 9 9 3

9
18

9
9 27 27 9
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Probability

The number of steps n to reach the opposite vertex must be an odd

number and must be greater or equal to 3, n = 2k + 3.

We can prove by induction that the number of paths arriving to

A(3, 2k + 3) (on the right side), is 3k .

So, the number of paths going to the opposite vertex (by right ou

by left) is

N3
2k+3 = 2 · 3k
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Distribution and expectation

The probability to reach the opposite vertex with n steps is

P(3, n) =
2 · 3k

22k+3
=

2 · 3k

8 · 22k
=

1

4
· 3k

4k

The distribution is

k 0 1 2 3 . . . k

x 3 5 7 9 . . . 2k + 3

p
1

4

3

16

9

64

27

256
. . .

1

4
· 3k

4k
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Distribution and expectation

Thus

E =
1

4

∞∑
k=0

(2k + 3)
3k

4k
=?

E =
1

4

∞∑
k=0

(2k + 3)
3k

4k
=

1

2

∞∑
k=0

k · 3k

4k︸ ︷︷ ︸
S1

+
∞∑
k=0

3k+1

4k+1︸ ︷︷ ︸
S2

S2 : SG de u1 = 3
4 et q = 3

4 . Thus S2 =
3

4
· 1

3

4

= 3
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Simple programs
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Distribution and expectation

Thus

E =
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∞∑
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1

4

∞∑
k=0

(2k + 3)
3k

4k
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1

2

∞∑
k=0

k · 3k

4k︸ ︷︷ ︸
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Distribution and expectation

Thus

E =
1

4

∞∑
k=0

(2k + 3)
3k

4k
=?

E =
1

4

∞∑
k=0

(2k + 3)
3k

4k
=

1

2

∞∑
k=0

k · 3k

4k︸ ︷︷ ︸
S1

+
∞∑
k=0

3k+1

4k+1︸ ︷︷ ︸
S2

S2 : SG de u1 = 3
4 et q = 3

4 . Thus S2 =
3

4
· 1

3

4

= 3
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Expectation - démonstration

S1 =
∞∑
k=0

k · 3k

4k

=
∞∑
k=1

k · 3k

4k

=
∞∑
k=0

(k + 1) · 3k+1

4k+1

=
∞∑
k=0

k · 3k+1

4k+1
+
∞∑
k=0

3k+1

4k+1

=
3

4
S1 + S2

Thus S1 =
3

4
S1 + 3 ⇐⇒ S1 = 12 et E = 6 + 3 = 9
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Walk on an hexagon : Conclusion

Reach the opposite vertex in an hexagon

The average number of steps to reach the opposite vertex of an

hexagon is 9.

Yvan Haine - Michelle Solhosse Walk of the drunk Rover



Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Octagon - Monte Carlo method
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Principle
Question
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Decagon - Monte Carlo method
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Problem statement
Simple programs

Question 1
Question 2
Question 3

Walking on a polygon

Principle
Question
Walking on a square
Walking on a hexagon
Walking on other polygons

Conjecture
Expectation in a polygone

Conjecture - Answer

In a polygon with 2n sides, the average number of steps leading the

drunkhard to the opposite vertex is equal to n2.
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Conjecture - Answer

In a polygon with 2n sides, the average number of steps leading the

drunkhard to the opposite vertex is equal to n2.
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Problem statement
Simple programs

Question 1
Question 2
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Walking on a polygon

Principle
Question
Walking on a square
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Walking on other polygons
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